Warning signals and predator-prey coevolution.
نویسندگان
چکیده
Theories of the evolution of warning signals are typically expressed using analytic and computational models, most of which attribute aspects of predator psychology as the key factors facilitating the evolution of warning signals. Sherratt provides a novel and promising perspective with a model that considers the coevolution of predator and prey populations, showing how predators may develop a bias towards attacking cryptic prey in preference to conspicuous prey. Here, we replicate the model as an individual-based simulation and find, in accordance with Sherratt, that predators evolve a bias towards attacking cryptic prey. We then use a Monte Carlo simulation to calculate the relative survivorships of cryptic and conspicuous prey and stress that, as it stands, the model does not predict the evolution or stability of warning signals. We extend the model by giving predators continuous attack strategies and by allowing the evolution of prey conspicuousness: results are robust to the first modification but, in all cases, cryptic prey always enjoy a higher survivorship than conspicuous prey. When conspicuousness is allowed to evolve, prey quickly evolve towards crypsis, even when runaway coevolution is enabled. Sherratt's approach is promising, but other aspects of predator psychology, besides their innate response, remain vital to our understanding of warning signals.
منابع مشابه
Coevolution can reverse predator-prey cycles.
A hallmark of Lotka-Volterra models, and other ecological models of predator-prey interactions, is that in predator-prey cycles, peaks in prey abundance precede peaks in predator abundance. Such models typically assume that species life history traits are fixed over ecologically relevant time scales. However, the coevolution of predator and prey traits has been shown to alter the community dyna...
متن کاملVariation in predator species abundance can cause variable selection pressure on warning signaling prey
Predation pressure is expected to drive visual warning signals to evolve toward conspicuousness. However, coloration of defended species varies tremendously and can at certain instances be considered as more camouflaged rather than conspicuous. Recent theoretical studies suggest that the variation in signal conspicuousness can be caused by variation (within or between species) in predators' wil...
متن کاملPrey–Predator Communication: For Your Sensors Only
Prey have evolved myriad strategies to escape predation. Ground squirrels tailor their defensive signals to the predator at hand and use infrared warning signals in response to heat-sensitive rattlesnakes.
متن کاملWarning signals are under positive frequency-dependent selection in nature.
Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS ope...
متن کاملChanges in predator community structure shifts the efficacy of two warning signals in Arctiid moths.
Polymorphism in warning coloration is puzzling because positive frequency-dependent selection by predators is expected to promote monomorphic warning signals in defended prey. We studied predation on the warning-coloured wood tiger moth (Parasemia plantaginis) by using artificial prey resembling white and yellow male colour morphs in five separate populations with different naturally occurring ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Biological sciences
دوره 271 1550 شماره
صفحات -
تاریخ انتشار 2004